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Abstract

The theoretical minimum transactional response time of an application serves as a ba-
sis for the expected response time. The lower threshold for the minimum response time
represents the minimum amount of time that the application should take to complete a
transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re-
sults of unsuccessful transactions. On the converse, when an application’s response time
falls above an upper threshold, there is likely an anomaly in the application that is causing
unusual performance issues in the transaction. This report explains how the non-stationary
Generalized Extreme Value distribution is used to estimate the lower threshold of an ap-
plication’s daily minimum transactional response time. It also explains how the seasonal
Autoregressive Integrated Moving Average time series model is used to estimate the upper
threshold for an application’s average transactional response time.
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Chapter 1

Introduction

Motivation

Sandia National Laboratory’s Application Services and Analytics department’s middle-
ware services directly support more than 350 enterprise applications with more than 9,500
distinct users during normal business hours. Since their enterprise applications provide
support to the entire laboratory, it is important that they constantly monitor and improve
Sandia’s Enterprise Information System. This is achieved, not only by maintaining a superior
level of reliability, utility, and expediency in their work, but by researching and implement-
ing analytic capabilities that can improve our understanding of an applications transactional
response time.

The theoretical minimum transactional response time of an application serves as a basis
for the application’s expected transactional response time. The first goal of this analysis is
to estimate the theoretical daily minimum response time of an application. Estimating the
daily minimum response time of an application will result in an estimated lower limit for the
application’s minimum response time. This lower limit can serve as the lower threshold for
an alert system that detects anomalies in the applications. The lower threshold represents
the minimum amount of time that the application should take to complete any transaction
on that day. The moment a response time falls below this lower threshold, an alert can be
sent out notifying that the application is experiencing a performance issue that is resulting
in unsuccessful transactions.

When an application’s response time is greater than a certain threshold, there is likely an
anomaly in the application that is causing unusual performance issues. The theoretical aver-
age response time can be used to calculate the value of this threshold. Therefore, the second
goal of this analysis is to estimate both the average daily and average hourly response times
for an application. The upper limits for these estimates will serve as the upper thresholds
that will be used to detect significantly large response times. The upper threshold for the
average daily response time will be used to perform end of day problem management; if the
observed daily average response time is greater than the upper threshold, then an alert will
be sent out notifying that the application had a performance issue throughout the day. The
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upper threshold for the average hourly response time will be used to check for anomalies
every hour.

Middleware Applications

Oracle eBusiness Suite Application

Oracle is an enterprise resource planning tool that is comprised of financial, supply
chain, and project accounting applications that are used daily by the administration at
Sandia National Laboratories. For this analysis, we will analyze the response times for a
standardized transaction from the Oracle eBusiness Suite application. The methodology
used to estimate the theoretical minimum and average response times and the results for
the Oracle eBusiness Suite are explained in detail in Chapter 5. Figure 1.1 represents the
anatomy of a standardized transaction for the Oracle eBusiness Suite application. It shows
how the response time for a transaction is measured.

Figure 1.1: Anatomy of a standardized transaction for Oracle eBusiness Suite.

Weblogic 12c Server Application

Weblogic 12c is a Java Enterprise Edition application server. For this analysis, we will
analyze the response times for a standardized transaction from the Weblogic 12c Server appli-
cation. Since the methodology used to perform this analysis is identical to the methodology

14



used to perform the analysis on the Oracle eBusiness Suite application, only the results are
discussed in Chapter 6. Figure 1.2 represents the anatomy of a standardized transaction for
the Weblogic c12 Server application. It shows how the response time for ae transaction is
measured.

Figure 1.2: Anatomy of a standardized transaction for Weblogic c12 server application.

Although we are only analyzing the transactional response times for the Oracle eBusinnes
suite and Weblogic c12 sever applications, the statistical methodology that is used in this
analysis can be applied to any application with a transactional system.

Method

The transactional response times that are collected for each middleware application are
measured at successive and equally spaced points in time. In statistics, a set of data points
that are indexed by time is called a time series. Statistical methods that are used to analyze
time series data are known as time series analysis. An introduction to time series analysis
can be found in Chapter 2 and the methods that are used in this analysis can be found in
Chapters 3 and 4. The programming language that is used to perform this analysis is R.
R is a free programming language and software environment for statistical computing and
graphics [11].

The probability distribution function (pdf) that is used to estimate the distribution of the
daily minimum transactional response time for an application is the Generalized Extreme
Value Distribution (GEV ). The theory behind the Generalized Extreme Value Distribution
and the parameter selection process is discussed in Chapter 3. The time series model that
is used to estimate the daily and hourly transactional response times for an application is

15



the Autoregressive Integrated Moving Average model (ARIMA). The theory behind this
model and the selection of the model’s orders are discussed in Chapter 4. The results of
applying these time series methods to the Oracle eBusiness Suite and Weblogic c12 Server
applications are discussed in Chapters 5 and 6, respectively.
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Chapter 2

Time Series

Introduction

A data set that is a set of observations that are collected sequentially in time is known as
a time series [10]. A time series that has only one observation per time index is known as a
univariate time series. For example, let y1:365 = {y1, y2, ..., y365} be the set of data points that
represent the daily average transactional response times for an application. The data point
yt denotes the observed average response time for day t. Since the average response times
are collected at equally spaced time points, the set y1:365 is an equally spaced univariate time
series. The methods used in this analysis can only be applied to an equally spaced univariate
time series. Figure 2.1 is a plot of the time series y1:365.
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Figure 2.1: An application’s average daily response time for t = 1, 2, ..., 365.
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In mathematics, a random variable is a variable whose value can take on any value
in it’s sample space. Each value in a random variable’s sample space is associated with
a certain probability that is based on the random variable’s pdf. For example, let Y be
the random variable that represents the average daily transactional response time for an
application and let Ω denote its sample space. Since response times are always greater than
0, the sample space for Y is Ω = {(0,+∞)}. If Y has a standard uniform distribution
(Y ∼ uniform(a = 0, b = 1)), then all values in Ω have the equal probability of occurrence.
Whereas, if Y is normally distributed with a mean equal to 2 and a variance equal to 1
(Y ∼ normal(µ = 2, σ2 = 1)), the values in Ω that are close to 2 have a higher probability
of occurring [2].

Let X be a random variable that has a pdf denoted by fX(x). The expected value of X,
is the average value of X, weighted according to fX(x). It is denoted by E[X] and defined
by

E[X] =

∫
Ω

xfX(x)dx. (2.1)

The variance of X is the second central moment of X. It is denoted by V ar[X] and is
defined by

V ar[X] = E[(X − E[X])2]. (2.2)

The variance of a random variable can be interpreted as the measure of spread of its distri-
bution around its mean [2].

A time series process is a set of random variables that are indexed by time and is denoted
by

Y 1:T = {Y 1,Y 2, ...,Y T}.

A realization of a time series process is a set of observed values from a time series pro-
cess. Since we have defined Y as the random variable that represents the average daily
transactional response time for an application, the time series plotted in Figure 2.1, y1:365 =
{y1, y2, ..., y365}, is a realization of the time series process Y 1:365. For this analysis, a realiza-
tion of time series processes will be referred to as a time series [10].

A random sample is a set of random variables that have a common probability distri-
bution function, are independent and is denoted by X1:n = {X1,X2, ..,Xn}. Let x1:n =
{x1, x2, ..., xn} be a realization, i.e. set of observed values, from the random sample X1:n.
An important assumption when fitting observed data to a statistical model is that the data
is a realization of independent random variables [2]. This assumption is always met when

18



analyzing x1:n because the random variables in X1:n are independent. However, this as-
sumption is never met when analyzing a time series because the random variables in a time
series process are indexed by time, making them dependent of each other [10].

For this analysis, random variables, random samples and time series process are denoted
by a bold capital letter. Observed values are denoted by lower case letters. The sets of
letters (x,X) and (y,Y ) are used to differentiate between a random sample and a time
series process. For example, X represents a random variable from a random sample and x
represents an observation of a random sample. Whereas, Y represents a random variable
from a time series process and y represents an observed value from a time series.

Stationarity

An important assumption made when fitting a time series to a statistical model is sta-
tionarity. A time series is stationary if it is a realization of a stationary time series process.
A time series process is stationary if there is a constant mean and variance throughout the
whole process and it’s behavior does not depend on when one starts to observe the process
[10].

Stationarity in a Time Series Process

Two degrees of stationarity that are widely used in time series analysis are strong sta-
tionarity and second order stationarity. It is very difficult to prove that a time series is a
realization of a strong stationary time series process. Therefore, we will assume that a time
series is stationary if we can prove that it is a realization of a time series process that is
second order stationary. A time series process, Y 1:T = {Y 1, ...Y T}, is said to be second
order stationary if for any sequence of times, t1, .., tT , and any lag, h, all the first and second
joint moments of (Y t1 , ...,Y tT )′ exists and are equal to the first and second moments of
(Y t1+h, ...,Y tT+h)

′ [10]. In other words, a time series process, Y 1:T , is said to be second
order stationary if

1. The expected value for all the random variables in Y1:T are equivalent: E[Y t] = µ for
all t.

2. The variance for all the random variables in Y1:T are equivalent: V ar[Y t] = σ for all
t [10].
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Graphical Check of Stationarity

Two diagnostic plots that are used to check the assumption of stationarity in a time series
are a time series plot and a autocorrelation function (ACF) plot. A time series plot is a plot
of a realization of a time series process, i.e. a plot of an observed time series. A time series
plot suggest non-stationarity if it contains graphical trend and/or seasonal pattern [10].

Figure 2.2 contains four time series plots. The times series in Figures 2.2(a) and 2.2(b)
were generated in R. Figure 2.2(c) is a time series plot of the data set from the R Package fore-
cast that contains Australia’s monthly gas production from 1956 to 1995 [6]. Figure 2.2(d)
is a time series of the observations collected from an electroencephalogram corresponding to
a patient undergoing ECT therapy [12].

Figure 2.2(a) suggest stationarity because there appears to be a constant mean and
variance throughout the observed period, whereas Figure 2.2(b) suggest non-stationarity with
trend because its mean increases over the observed period. Both Figures 2.2(c) and 2.2(d)
suggest non-stationary with trend and seasonal pattern. The data points in each of these
plots form a sinusoidal pattern and increase/decrease over the observed period.

The ACF measures the linear dependence between two random variables from the same
time series process; one random variable at time t and one at time s. ACF is denoted by
ρ(t, s) and defined by [10]

ρ(t, s) =
γ(t, s)√

var(Y t)var(Y s)
(2.3)

where

γ(s, t) = Cov(Y t,Y s) = E{(Y t − ut)(Y s − us)}

ut = E[Y t]

us = E[Y s].

Note that the function γ(s, t) is the covariance function between random variables Yt and Ys.
When dealing with data that is stationary, we may assume that E[Y t] = µ and V ar(Y t) = σ2

for all values of t. Therefore, for a stationary time series process, γ(t, s) only depends on the
distance between the indices t and s, |t − s| = h, making γ(s, t) = γ(h) = Cov{Y t,Y t−h}
and ρ(t, s) = ρ(h) = γ(h)

γ(0)
. An ACF plot contains the values of the autocorrelation function

estimated from the time series. The ACF plot graphically explains the estimated correlation
patterns displayed by a time series process at different points in time [10].
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Figure 2.2: Stationary vs. Non-Stationary Time Series Plots

Figure 2.3 contains the corresponding ACF plots for the time series plots in Figures 2.2.
The blue dotted lines in the ACF plots represent the upper and lower confidence intervals
for insignificant autocorrelations. A time series that is stationary produces an ACF plot
that contains values that are small and quickly approach zero as lag (h) increases. A time
series that is non-stationary produces an ACF plot that contains values that are large, often
positive, that slowly or sometimes never approaches zero as h increases. The values tend to
lie outside of the blue dotted lines [10].
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Algebraic Check of Stationarity

An algebraic method that is used to check the assumption of stationarity in a time series
is the unit root test. The unit roots test that is used in this analysis is the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test. The KPPS test tests for either level-stationarity or
trend-stationarity. A time series process is level-stationary if it does not contain any un-
derlying trend, whereas a time series process that is trend-stationary has underlying trend
that can be removed from the time series via smoothing operators. Since we are interested
in time series process that do not have any trend, we will use the level-stationarity KPSS
test to test for stationarity. Thus, we will only explain the mathematics and structure of the
level-stationary KPSS test in detail [8].

Let the time series y1:T be a realization of the time series process Y 1:T . In order to prove
that y1:T is a stationary time series, the KPSS test is used to check if Y 1:T is a stationary
time series process. In order to perform the KPSS test, a linear stationary regression of Y t

on an intercept is fitted from the observed values in the time series y1:T . The regression
model is [8]

Y t = βo + εt (2.4)

for t = 1, 2, .., T

where

Y t = a random variable from Y 1:T that is indexed at time t

βo = intercept

εt = random variable that represents the stationary error at time t

where

εt
iid∼ (0, σ2

ε).

The null hypothesis for this test assumes that the variance of the stationary error, denoted
by σt, is equal to zero. The alternative hypothesis assumes that the variance of the stationary
error is greater than zero:

Ho : σ2
ε = 0 vs. Ha : σ2

ε > 0. (2.5)

The test statistic is denoted by η̂µ and defined by [8]
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η̂µ = T−2

∑T
t = 1 (S2

t )

s2(l)
(2.6)

where [8]

St =
t∑
i=1

ei (2.7)

s2(l) = T−1

T∑
t = 1

(e2
t ) + 2T−1

L∑
s = 1

[(1 − s

L + 1
)

T∑
t = s+1

(etet − s)] (2.8)

L = o(T 1/2). (2.9)

The residual at time is the difference between the observed and fitted value at time t. It is
denoted by et and defined as

et = yt − ŷt. (2.10)

Note that ŷt is the fitted value, i.e. estimated value, at time t. This estimated value
is calculated from the fitted regression model, ŷt = β̂o. The fitted model only includes the
estimated intercept β̂o. Therefore, et = yt− β̂o for all t. The estimated intercept is calculated
from the time series y1:T [8].

The upper tail critical values for η̂µ can be found in Table 1 in Kwiatkowski et al. 1992.
If η̂µ is greater than the critical value at the α-level, then the null hypothesis is rejected at an
α-level of significance and we may assume that y1:T is non-stationary. If η̂µ is less than the
critical value at the α-level, then the null hypothesis is accepted at an α-level of significance
and we may assume that the time series y1:T is stationary [8].

It has already been shown graphically that the time series in Figure 2.2(a) is stationary.
The KPSS test will be used to algebraically show that the time series in Figure 2.2(a) is
stationary. The value of the test statistic that is calculated from this time series is η̂µ =
0.0390. In Kwiatkowski et al. 1992, Table 1 shows that at the α = .05 level of significance,
the p-value for the given value of η̂µ is .10. This implies that we do not have enough evidence
to reject the null hypothesis and that this time series has unit root. Therefore, the time series
in Figure 2.2(a) has been shown to be graphically and algebraically stationary.
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Removing Non-Stationarity

In time series analysis, the assumption of stationarity is important when modeling a time
series. Because most time series are realizations of a non-stationary process, there exists
smoothing techniques that are applied to time series in order to separate the non-stationary
data from the stationary data. These techniques involve decomposing the time series into
a “smooth” component and a component that contains the unexplained white noise. Two
smoothing techniques that are widely used and that are used in this analysis are moving
averages and differencing [10].

Suppose y1:T is a non-stationary time series. A technique that is used to remove the
non-stationarity from y1:T is by applying the moving average operator M , to y1:T . Applying
M to y1:T returns the set of transformed values {zq+1, zq+1, ..., zT−p} where [10]

zt =

p∑
j = −q

(ajyj + j), for t = (q + 1) : (T − p), (2.11)

where aj’s are weights that sum to one, aj ≥ 0 for all j and aj = a−j. It is generally assumed
that p = q, p and q are small values and an equal weight is selected for all j. The order of M
is equal to 2p+ 1 [10].

Figure 2.4 contains the results of applying the moving average operator with orders q = 3
and q = 6 to the non-stationary time series in Figure 2.2. Figures 2.4(b) and 2.4(c) show
that the transformed values in the set {zq+1, zq+1, ..., zT−p} become smoother as the order of
the moving average operator increases. The moving average smoothing technique removes
the white nose from the time series, but it does not remove the increasing trend.
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Figure 2.4: Graphical results of applying the moving average operator to a non-stationary
time series with increasing trend

There exists two types of differencing techniques, non-seasonal differencing and seasonal
differencing. Non-seasonal differencing is a smoothing technique that removes trend from a
time series. The d-order non-seasonal differencing operator is denoted by Dd and defined by
[9]

Dd = (1 − B)d. (2.12)

Dd is a function of the back-shift operator. The back-shift operator is denoted by B and is
defined by

Byt = yt−1. (2.13)

Applying the first-order non-seasonal differencing operator (D1) to the time series y1:T , re-
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turns the set of transformed values {z1, .., zT−1}, where [9]

zt = D1yt = (1−B)1yt = yt − Byt = yt − yt−1 []. (2.14)
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Figure 2.5: Graphical results of applying the operator D1 to the Australian monthly gas
production time series.

Figure 2.5(a) is the time series plot of the Australian monthly gas production. It was
mentioned previously that it is an example of a non-stationary time series with increasing
trend and a seasonal pattern. Figure 2.5(b) is a time series plot of the results of applying D1

to the Australian monthly gas production time series. The time series plot in Figure 2.5(b)
does no appear to have an increasing trend. However, there still appears to be a seasonal
pattern.

The seasonal differencing technique is a smoothing technique that removes both trend
and seasonal patterns from a non-stationary time series. The s-period d-order seasonal
differencing operator is denoted by Dd

s . It is defined by [9]

Dd
s = (1 − Bs)d (2.15)

and it is a function of the s-degree back shift operator Bs which is defined by

Bsyt = yt − yt−s. (2.16)

It is also a function of the number of periods in a season, denoted by s. The data points in
the Australian monthly gas production were collected every month. Therefore, in order to
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remove the seasonal pattern from the time series, the 12-period (monthly) first-order seasonal
difference operator, D1

12, is applied to the Australian gas production time series, y1:T . This
returns a vector of transformed values {z1, .., zT−1} where [9]

zt = D1
12yt = (1−B12)1yt = yt −B12yt = yt − yt−12 [9]. (2.17)
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Figure 2.6: Graphical results of applying D1
12 to the Australian monthly gas production time

series.

Figure 2.6(b) is a time series plot that contains the results of applying D1
12 to the Australian

monthly gas production time series. There no longer appears to be an increasing trend
nor seasonal pattern, implying that the D1

12 operator removed the non-stationarity from the
Australian monthly gas production time series.
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Chapter 3

Extreme Values in a Time Series
Process

Extreme Value Theory - Stationary

Estimating the distribution of an event that occurs with very small probability is of
interest in statistical inference. In statistics, these rare events are referred to as extreme
events and the theory of modeling and measuring these events is known as Extreme Value
Theory (EVT). Examples of statistics that are extreme events are maximums and minimums.
Order Statistics is a statistical method that infers on the distributions of these extreme events
[4].

Order Statistics

Let X1:n = {X1,X2, ...,Xn} be an random sample. The random variables in X1:n

placed in ascending order are known as the order statistics of X1:n. They are denoted by
X(i:n) = {X(1),X(2), ...,X(n)} and they satisfy X(1) ≤ X(2) ≤ ... ≤ X(n). The order
statistics are defined as

X(1) = min{X1:n}

X(2) = second smallest{X1:n}

.

.

.

X(n−1) = second largest{X1:n}

X(n) = max{X1:n}.

Since order statistics are random variables, each order statistic has a unique pdf that is
calculated from the joint probability distribution of the random sample X1:n [2].
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Let Z1:m = {Z1, ..Zm} be a set of independent random variables where fZi(zi) is the
pdf for the random variable Zi. The joint probability distribution function of a set of
independent random variables is equal to the product of each of the random variables’ pdfs.
Therefore, the joint pdf for the set Z1:m is defined by [2]

fZ1,...,Zm(Z1, ...,Zm) =
m∏
i=1

fZi(zi) = fZ1(z1) ∗ ... ∗ fZm(zm). (3.1)

As mentioned previously, a random sample is a set of independent random variables that
have the same pdf. Therefore, the joint pdf of the random sample X1:n is defined by

fX1,...,Xn(x1, ..., xn) =
n∏
i=1

fX(x) = [fX(x)]n (3.2)

where fX(x) is the pdf for the random variables in X1:n [2]. Unlike a set of independent
random variables or, more specifically, a random sample, the joint pdf of a set of random
variables that are dependent is very difficult to calculate. Since the random variables in a
time series process are dependent, the joint probability distribution of a time series process
is almost impossible to calculate. Therefore, modeling the distribution of extreme values in
a time series process can not be done through order statistics.

Generalized Extreme Value Distribution

Let Z1:n = {Z1, , ...,Zn} be a set of independent random variables. In Extreme Value
Theory, it has been shown that as n → ∞, the Generalized Extreme Value Distribution
(GEV) is the limiting distribution of the order statistics Z(min) and Z(max) [4]. The GEV is
a family of pdfs that combine the Gumbel, Frechet and Weibull distributions. The pdf for
Z(max) is defined by [4]

fZ(max)
(z|µ, σ, ξ) =

1

σ
t(z)ξ+1e−t(z) (3.3)

where

t(z) =

{
(1 + ( z−µ

σ
ξ))

1
ξ , if ξ 6= 0

e−
z−µ
σ , if ξ = 0

(3.4)

and where

µ = location parameter
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σ = scale parameter (> 0)

ξ = shape parameter.

The pdf for Z(min) is denoted by fZ(min)
(z|µ, σ, ξ). Since it can be shown thatmin(Z1, ...,Zn) =

−max(−Z1, ...,−Zn), fZ(min)
(z|µ, σ, ξ) is defined in terms of fZ(max)

(z|µ, σ, ξ) where

fZ(min)
(Z|µ, σ, ξ) = 1− fZ(max)

(Z|µ, σ, ξ). (3.5)

Let X1:n be a random sample. Since a random sample is set of independent random vari-
ables, for large values of n, the pdfs for X(min) and X(max) are denoted by fX(min)

(x|µ, σ, ξ)
and fX(max)

(x|µ, σ, ξ) and are equivalent to equations 3.3 and 3.5, respectively,

fX(min)
(x|µ, σ, ξ) = fZ(min)

(z|µ, σ, ξ) (3.6)

fX(max)
(x|µ, σ, ξ) = fZ(max)

(z|µ, σ, ξ). (3.7)

Extreme Value Theorem for Stationary Time Series Processes

Let Y 1:n = {Y 1, ..,Y n} be a stationary time series process and let

Y (min) = min{Y 1, ...,Y n} and Y (max) = min{Y 1, ...,Y n}.

Unlike a random sample, the random variables in Y 1:n are neither independent nor identically
distributed. Since neither of the assumptions of independence or an identical distribution
are met, it would seem that the limiting distributions for Y (min) and Y (max) are not from
the family of generalized extreme value distributions. However, the Extreme Value Theorem
for Stationary Time Series Process (EVTS) states that for large values of n, Y (min) and
Y (max) follow a GEV distribution when Y (min) and Y (max) are from a stationary time series
process. In particular, the pdfs of Y (min) and Y (max) are denoted by fY (min)

(y|µ, σ, ξ) and
fY (max)

(y|µ, σ, ξ), and are also equivalent to equations 3.3 and 3.5, respectively,

fY (min)
(y|µ, σ, ξ) = fZ(min)

(z|µ, σ, ξ) (3.8)

fY (max)
(y|µ, σ, ξ) = fZ(max)

(z|µ, σ, ξ). (3.9)

A full explanation and proof of the EVTS can be found in Haan et. al 2006.
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The Block Minima/Maxima Method and the Peaks Over Threshold Method are two
techniques that are used to estimate the parameters in fY (min)

(y|µ, σ, ξ) and fY (max)
(y|µ, σ, ξ).

Both of these techniques are based off of the EVTS. For this analysis, we will only explain
the Block Minima Method because it is used to estimate the distribution of an application’s
minimum daily transactional response time.

Block Minima Method

Let y1:n be a time series from the stationary time series process Y 1:n. In extreme value
theory, the block minima method consists of dividing the observation in y1:T into K non-
overlapping blocks of equal size [3]. The set y(min)1:K = {m1,m2, ...,mK} consists of the
observed minimum values from each of the K blocks. The observations in y(min)1:K are
defined by

m1 = min(block 1)

m2 = min(block 2)

.

.

.

mk = min(block K).

In the EVTS, it has been proven that the limiting distribution of Y (min) (eqn. 3.8) can be

estimated by the pdf fY (min)
(y|µ̂, σ̂, ξ̂), which is defined by

fY (min)
(y|µ̂, σ̂, ξ̂) = 1− fY (max)

(−y|µ̂, σ̂, ξ̂) = 1− 1

σ̂
t(−y)ξ̂+1e−t(−y) (3.10)

where

t(−y) =

{
(1 + (−y−µ̂

σ̂
ξ̂))

1

ξ̂ , if ξ̂ 6= 0

e−
−y−µ̂
σ̂ , if ξ̂ = 0

and where

µ̂ = estimated location parameter

σ̂ = estimated scale parameter (> 0)

ξ̂ = estimated shape parameter.
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The estimated parameters, µ̂, and σ̂, ξ̂ are calculated directly from the observations in
y(min)1:K [3].

Estimating Parameters

A method used to estimate the parameters in fY (min)
(y|µ̂, σ̂, ξ̂) is the maximum likeli-

hood method. The maximum likelihood estimates of the parameters are the values which
the likelihood function, denoted by L(µ, σ, ξ|y(min)1:K ), attains its maximum. An in depth
explanation of this method can be found in Casella et. al. 2002 [2]. Once the parameters
are estimated via the maximum likelihood method, E[{Y (min)] is estimated directly from

the estimated parameters µ̂, and σ̂, ξ̂ and is defined by [3]

Ê[{y(min)}] = −[µ̂− σ̂

ξ̂
+
σ̂

ξ̂
g1], (3.11)

where gk = Γ(1 − kξ̂) and Γ(t) is the gamma function. The variance of Y (min) is also
estimated from the estimated parameters and is defined by [3]

ˆV ar[{y(min)}] =
σ2

ξ2
(g2 − g1)2. (3.12)

The estimated pdf fY (min)
(y|µ̂, σ̂, ξ̂) is beneficial because it is related to the estimated

cumulative distribution function (cdf). The estimated cdf is denoted as FY (min)
(z|µ̂, σ̂, ξ̂)

and defined by

FY (min)
(z|µ̂, σ̂, ξ̂) = P (Y (min) ≤ z|µ̂, σ̂, ξ̂) =

∫ z

0

fY (min)
(y|µ̂, σ̂, ξ̂) dy. (3.13)

The cdf calculates the probability of Y (min) being less than or equal to z. The cdf is also used
to construct the lower and upper limits for confidence intervals. For example, suppose we
wanted to calculate the lower and upper limits for a 95% confidence interval. The lower and
upper limits are denoted by qlower and qupper and satisfy equations 3.15 and 3.14, respectively,

FY (min)
(qlower|µ̂, σ̂, ξ̂) = P (Y (min) ≤ qlower) =

∫ qlower

0

fY (min)
(y|µ̂, σ̂, ξ̂) dy = .025 (3.14)

FY (min)
(qupper|µ̂, σ̂, ξ̂) = P (Y (min) ≤ qupper) =

∫ qupper

0

fY (min)
(y|µ̂, σ̂, ξ̂) dy = .975. (3.15)
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Statistics that perform well with data that is drawn from a wide range of pdfs are known
as robust statistics. Since the expected value of a random variable is a weighted average, it
is sometimes considered to be a non-robust statistic because it can be effected by outliers.
The median is a statistic that is often used in place of the expected value because it is a
robust statistic. The median is the value that separates the higher half of a probability
distribution from the lower half [2]. The estimated median of Y (min) is denoted by q.50. It
too is calculated directly from the estimated parameters and defined by [3]

q.50 =

{
−[µ̂+ σ̂ (ln2)−ξ̂−1

ξ̂
], if ξ̂ 6= 0

−[µ̂− σ̂ln[ln(2)]], if ξ̂ = 0.
(3.16)

The median can also be the estimated through the cdf, where q.50 satisfies

FY (min)
(q.50|µ̂, σ̂, ξ̂) = P (Y (min) ≤ q.50) = P (Y (min) ≥ q.50) = .50. (3.17)

Extreme Value Theory - Non-Stationary

In the previous section, we showed that with the EVTS, the block minima method and
the assumption of stationarity, fY (min)

(y|µ̂, σ̂, ξ̂) is the estimated pdf for the minimum of
a time series process (eqn. 3.10). We have discussed in earlier sections that time series
are rarely stationary. Since the assumption of stationarity is crucial in the EVTS and the
block minima method, the non-stationary generalized extreme value (non-stationary GEV)
distribution was developed in order to model the distribution of the minimum of a non-
stationary time series process. The GEV distribution defined earlier in eqn. 3.3 will now be
referred to as the stationary GEV distribution.

Non-Stationary Generalized Extreme Value Distribution

In a stationary time series, the mean and variance are constant over the observation
period. Because of this, the parameters in the stationary-GEV distribution are fixed. The
non-stationary-GEV distribution accounts for trend and/or seasonal pattern by making one
or more of the model parameters functions of time (t) and/or seasonal period (s). The
time/seasonal dependent parameters are denoted as µ(t, s), σ(t, s), and ξ(t, s). The inter-
pretation of these parameters are identical to their interpretation in the stationary-GEV
distribution. However, since the parameters µ(t, s), σ(t, s), and ξ(t, s) are functions of t and
s, they are not constant.

If a realization of a time series appears to only have trend, one or more of the parameters
are typically polynomials that are dependent on t. If a time series appears to only have
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seasonal pattern, one or more of the parameters are typically sinusoidal functions that are
dependent on s. If a time series appears to have trend and seasonal pattern, one or more
of the parameters are typically functions that are dependent on t and s. Table 3.1 contains
the structure of the three types of non-constant parameter functions.

Table 3.1: Time dependent parameter functions for the non-stationary GEV pdf.

Time (t) Seasonal (s) Time and Seasonal (t, s)

µ(t) = µo +
∑pµ

k=1 µkt
k, µ(s) = µo + µsinsin(ωcs) + µcoscos(ωcs) µ(t, s) = µ(t) + µ(s)

σ(t) = σo +
∑pσ

k=1 σkt
k σ(s) = σo + σsinsin(ωcs) + σcoscos(ωcs) σ(t, s) = σ(t) + σ(s)

ξ(t) = ξo +
∑pξ

k=1 ξkt
k ξ(s) = ξo + ξsinsin(ωcs) + ξcoscos(ωcs) ξ(t, s) = ξ(t) + ξ(s)

Note: The set of parameters {pµ, pσ, pξ} represents the degrees of their corresponding
polynomial functions. The sets of parameters θµ = {µo, µ1, ..., µpµ , µsin, µcos}, θσ =
{σo, σ1, ..., σpσ , σsin, σcos} and θξ = {ξo, ξ1, ..., ξpξ , ξsin, ξcos} are the coefficients for their corre-
sponding functions. The parameter ω = 2π

365.25
and the variable cs denotes the center of the

s-th period counted in days starting from the beginning of the year.

Model Selection

Let y1:T be a time series that is a realization of the time series process Y 1:T . Suppose
we are interested in estimating the parameters in fY (min)

(y|µ̂, σ̂, ξ̂) from the time series y1:T .
The first step in estimating the the parameters is determining if y1:T is stationary. The
stationarity of a time series is visually analyzed through the time series and ACF plots of
y1:T . The stationarity of y1:T is then analyzed algebraically with the KPSS unit root test.

If the results of these plots and test suggest that y1:T is a stationary time series, then the
block minima method is implemented and the parameters for the stationary-GEV distribu-
tion are estimated from the set of block minimums y(min)1:K . However, if the results suggest
that y1:T is a non-stationary time series, then the block minima method is still implemented
but the parameters for the non-stationary GEV distribution are estimated from y(min)1:K .
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In R, there exists functions that only estimate the parameters in fY (max)
(y|µ, σ, ξ). There-

fore, a problem arises in R when estimating the parameters in fY (min)
(y|µ, σ, ξ). Equa-

tion 3.10 states that fY (min)
(y|µ, σ, ξ) is defined as

fY (min)
(y|µ̂, σ̂, ξ̂) = 1− fY (max)

(y|µ̂, σ̂, ξ̂).

Therefore, fitting the negative of the block minimums (−y(min)1:K ) to fY (max)
(y|µ, σ, ξ) would

avoid this problem in R. However, the functions in R that would be used to perform this fit
have a difficult time handling data with negative values.

It can be proven that 1
min(Y 1,...,Y n)

= max( 1
Y 1
, ..., 1

Y n
). Therefore, the following transfor-

mation and analysis will be performed in R to to estimate the mean, median and confidence
bands for Y(min):

1. Perform a normalized reciprocal transformation on the set of block minimums (y(min)1:K ).
The purpose of normalizing the data is that it returns a better fit and a lower AIC value.
The set of the transformed block minimums is denoted as z(min)1:K = {z1, z2, .., zK}.
The transformed minimum for block k is denoted as zk and defined by

zk =
1
mk
− µrecip
vrecip

(3.18)

where

mk = min(blockk)

µrecip = 1
K

∑K
k=1

1
mk

vrecip = 1
K

∑K
k=1( 1

mk
− µrecip)2.

2. Fit the transformed values z(min)1:K = {z1, z2, .., zK} to fY (max)
(y|µ, σ, ξ) in R with the

function gev.fit from the ismev package [5].

3. Once the estimated parameters are calculated, the estimated expected value and me-
dian of Y(min) are calculated from the following two equations:

Ê[{y(min)}] = [µ̂− σ̂

ξ̂
+
σ̂

ξ̂
g1] ∗ vrecip + µrecip, (3.19)

q.50 =

{
[µ̂+ σ̂ (ln2)−ξ̂−1

ξ̂
] ∗ vrecip + µrecip, if ξ̂ 6= 0

[µ̂− σ̂ln[ln(2)]] ∗ vrecip + µrecip, if ξ̂ = 0.
(3.20)
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The lower and upper 95% confidence bands are denoted as q∗lower and q∗upper, respectively,
and are calculated by

q∗lower =
1

qlower ∗ vrecip + µrecip
and q∗upper =

1

qupper ∗ vrecip + µrecip
(3.21)

where

qlower satisfies FY (max)
(qlower|µ̂, σ̂, ξ̂) = .025. and qupper satisfies FY (max)

(qupper|µ̂, σ̂, ξ̂) =
.975.

In Step 2, the technique that the function gev.fit() uses to estimate the parameters for
either the stationary or non-stationary GEV distribution is the Nelder-Mead Method. The
Nelder-Mead Method is a non linear optimization method that finds the maximum likelihood
estimates for the parameters [3].
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Chapter 4

Modeling Time Series

Introduction

In order to understand the relationship between the sequential observations in a time series
and be able to forecast future observations, time series are fitted to statistical models. For
example, recall the time series, y1:365, that is plotted in Figure 2.1 contains an application’s
daily average response times. Questions that may arise when analyzing this time series is
how a day’s average response time is related to the previous days’ average response times
or if the day of the week or month has influence on a day’s average response time. Fitting
y1:365 to an appropriate statistical model will provide answers to these questions.

There are different types of statistical models that can be used to analyze a time series.
The selection of the model often depends on the stationarity of the time series. If a time
series is stationary, either an autoregressive, a moving average, or an autoregressive moving
average model can be selected as the most appropriate model. If the time series is non-
stationary, a mixed model that incorporates smoothing techniques is often selected as the
most appropriate model. Two non-stationary mixed models that are discussed in this analysis
are the seasonal and non-seasonal autoregressive integrated moving average models. Again,
the selection of the most appropriate mixed model depends on the type of non-stationarity
that is present in the time series.

Non-Mixed Models

Autoregressive Model: AR(p)

If the time series y1:365 is a realization of the stationary time series process that assumes a
day’s average response time is dependent only on the previous days’ average response times,
then an autoregressive model with order p (Ar(p)) would be used to model the dependencies
in y1:365. The AR(p) model is the simplest time series model that is used to explore the
dependencies between random variables in a stationary time series process. The order of an
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autoregressive time series model is denoted by p and it represents the maximum distance
(|t− s|) between random variables Yt and Ys such that cov(Yt,Ys) is significant [10].

The time series process Y1:T is an Ar(p) process if each Yt arises from the autoregressive
time series model [10]

Yt =

p∑
j=1

φjYt−j + εt (4.1)

where

p = model order

φj = model parameter for Yt−j

εt = stationary error at time t.

It is often assumed that for all t, εt
iid∼ normal(0, v). Suppose Yt arises from an autoregressive

time series process with order p = 3. This implies that the value of Yt depends on Yt−1,Yt−2

and Yt−3 and the stationary error at time t and is equivalent to

Yt =
3∑
j=1

φjYt−j + εt,= φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + εt.

The autoregressive characteristic polynomial of an AR(p) process is denoted as Φ and
defined by [10]

Φ = 1−
p∑
j=1

φju
j [10]. (4.2)

If Φ(u) = 0 only for values of u such that |u| < 1, then the autoregressive characteristic
polynomial, Φ, has unit root. Causality is the direct cause and effect relationship between
two observations. An AR(p) process is casual if Φ has unit root. Causality of an AR(p)
process implies stationarity, however, stationarity does not imply causality [10].

When fitting y1:T to an AR(p) model, the set of model parameters {φ} = {φ1.φ2, ..., φp}
are estimated directly from y1:T . The set of estimated parameters are denoted by {φ̂}
= {φ̂1, φ̂2, ..., φ̂p}. The most common technique that is used to estimate the parameters
in a statistical model is the maximum likelihood method [10]. The maximum likelihood
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estimates of the parameters {φ}, are the values which the likelihood function, denoted by
L[{φ}|{y1:T )}], attains its maximum [2].

The appropriate order of an AR(p) model is chosen via the Akaike Information Criterion
(AIC) method. The AIC method involves fitting y1:T to AR models for different values of p.
The value of p that returns the fitted AR model with the lowest AIC value is then selected
as the most appropriate model. The equation for AIC is [10]

AIC = 2k − 2ln(L) (4.3)

where

k = number of parameters in the model

L = L[{φ̂}|{y1:T )}].

Once {φ̂} are estimated and p is selected, the fitted values of y1:T , denoted by ŷ1:T , are
estimated from the fitted AR(p) model

ŷt =

p∑
j=1

φ̂j ŷt−j (4.4)

where

ŷ1 = y1, ŷ2 = y2, ..., ŷp = yp.

Moving Average Model: MA(q)

If the time series y1:365 is a realization of the stationary time series process that assumes a
day’s average response time is dependent only on the previous days’ average response times’
random errors, then a moving average time series model with order q (MA(q)) would be used
to model the dependencies in y1:365. The MA(q) model is used to model the random error
dependencies in a time series process. The parameter q represents the order of a moving
average model and it is defined as the maximum distance (|t − s|) between the random
variables Yt and Ys such that cov(εt,εs) is significant [10].

The time series process Y1:T is an MA(q) process if each Yt arises from the moving
average time series model [10]
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Yt =

q∑
j=1

θjεt−j + εt, (4.5)

where

q = model order

θj = model parameters for εt−j

εt = stationary error at time t.

It is often assumed that εt
iid∼ normal(0, v). The moving average characteristic polynomial

of an MA(q) process is denoted by Θ and defined by [10]

Θ = 1−
q∑
j=1

θju
j. (4.6)

If Θ(u) = 0 only for |u| < 1, then Θ has unit root. An important assumption for a MA(q)
process is that the parameters {θ} are identifiable. An MA(q) process is identifiable if Θ
has unit root [10].

The MA(q) model parameters {φ} = {θ1.θ2, ..., θq} are estimated via the method of

maximum likelihood and they are denoted as {θ̂} = {θ̂1, θ̂2, ..., θ̂q}. The appropriate value of

q is chosen via the AIC method. Once {θ̂} are estimated and p is selected, the fitted values,
denoted by ŷ1:T , are estimated from the fitted model

ŷt =

q∑
j=1

θ̂j ε̂j−q (4.7)

where

ε̂t = yt − ŷj−q for t = p+ 1, ..., T

ε̂1, ε̂2, ..., ε̂p
iid∼ normal(0, v) [10] .

Forecast Function

Suppose we fit y1:365 to an AR(p) model. Once the value of p is selected and the model
parameters are estimated, the fitted values are calculated directly from equation 4.4. The
fitted values, denoted by ŷ1:365, represent the estimated daily average transactional response
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times from Day 1 to Day 365. Suppose we also fit y1:365 to an MA(q) model. The set of
fitted values would be directly calculated from equation 4.7 and they would also represent
the estimated daily average transactional response time for the 365 days.

It is of interest to forecast the daily average response times for the next l days (t =
366, ..., 365 + l). The set of forecasted values are denoted by ŷ366:365+l = {ŷ366, ..., ŷ365+l}.
Each of the forecasted values are calculated directly from the forecast function. The forecast
function is a linear combination of the estimated model parameters and the corresponding
fitted values. Whether {φ̂} = {φ̂1, φ̂2, ..., φ̂p} or {θ̂} = {θ̂1, θ̂2, ..., θ̂q} are selected as the
forecast function’s model parameters depends on whether the fitted values are a result of an
AR(p) or MA(q) fit [10].

The function in R that is used to forecast future values is forecast() and it is from the
forecast package in R [6]. This function is based off of the algorithm developed by Peiris and
Perera (1988) [9].

Mixed Models

Autoregressive Moving Average Model: ARMA(p, q)

In time series analysis, there exists mixed models used to explain the dependency rela-
tionships in time series process. An autoregressive moving average model with orders p and
q (ARMA(p, q)) is a mixed model that combines an autoregressive model with a moving av-
erage model. The parameters p and q represent the orders of the autoregressive and moving
average parts, respectively. Causality and identifiability are important assumptions for the
parameters in an ARMA(p, q) model [10].

The time series process Y1:T , is an ARMA(p, q) process if each Yt arises from the au-
toregressive moving average time series model [10]

Yt =

p∑
j=1

φjYt−j +

q∑
j=1

θjεt−j + εt, (4.8)

where

φj = model parameter for the autoregressive term Yt−j

θj = model parameter for the moving average term εt−j
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εt = stationary error at time t.

The autoregressive moving average time series model can also be written in terms of the
characteristic equations 4.2 and 4.6 and the back shift operator B (eqn. 2.13) [10]

Φ(B)Yt = Θ(B)εt (4.9)

where

Φ(B) = (1− φ1B
1 − ...− φpBp) and Θ(z) = (1− θ1B

1 − ...− θpBq). (4.10)

Autoregressive Integrated Moving Average Model: ARIMA

As mentioned before, causality and identifiability are important assumptions when fitting
a time series to either an AR(p), MA(q) or ARMA(p, q) model. If a time series is non-
stationary, these assumptions are rarely met. Since it is frequent that time series processes are
non-stationary with trends and seasonal patterns, there exists an autoregressive integrated
moving average model (ARIMA) that is used to analyze the dependency within a non-
stationary time series process. There exists two types of ARIMA models; a non-seasonal
autoregressive integrated moving average model with orders p, q and d (ARIMA(p, q, d))
and a seasonal autoregressive integrated moving average model with orders p, q, d, P , Q, D,
and s (ARIMA(p, q, d)(P,Q,D)[s]) [7].

Non-Seasonal ARIMA(p, q, d) Model

If the observed daily average response times from y1:365 increased over the 365 day period,
we would assume that y1:365 is a realization of a time series process that is non-stationary
with increasing trend. The non-seasonal ARIMA(p, q, d) model is appropriate for modeling
a time series that appears to be non-stationary with trend. The ARIMA(p, q, d) differs from
the ARMA(p, q) in that the prior applies the non-seasonal differencing operator to the time
series in order to remove non-stationary trend [7].

The time series process Y1:t is a non-seasonal ARIMA(p, q, d) process if each Yt arises
from the autoregressive integrated moving average time series model [7]

Φ(B)DdYt = Θ(B)εt (4.11)

where

εt = stationary error at time t.
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Dd = non-seasonal differencing technique defined in equation 2.12.

It is assumed that the εt’s are independent and identically distributed with mean zero and
variance equal to v. The functions Φ and Θ are the characteristic function of the autore-
gressive and moving average parts defined in equation 4.10 [7].

Seasonal ARIMA(p, q, d)[P,D,Q][s] Model

If the values of observed daily average response times from y1:365 depended on the month
they were observed, we would assume that y1:365 is a realization of a time series process that
is non-stationary with trend and seasonal pattern. The seasonal ARIMA(p, q, d)(P,D,Q)[s]

model is appropriate for modeling a time series that appears to be non-stationary with trend
and seasonal pattern with period s. The ARIMA(p, q, d)(P,D,Q)[s] applies a combination
of the non-seasonal and seasonal differencing operators to the time series in order to remove
the non-stationarity and explain the dependencies that exits due to the seasonal patterns
[7].

The time series process Y1:T is a seasonal ARIMA(p, q, d)(P,D,Q)[s] process if each Yt

arises from the autoregressive integrated moving average time series model [7]

Φ̃(Bs)Φ(B)DD
s D

dYt = Θ̃(Bs)Θ(B)εt, (4.12)

where

εt = stationary error at time t.

Ds
d = seasonal differencing operator defined in equation 2.15.

It is assumed that the εt’s are independent and identically distributed with mean zero
and variance equal to v. The functions Φ(B) and Θ(B) are defined in equation 4.10. The

functions Φ̃ and Θ̃ are the seasonal characteristic functions for the autoregressive and moving
parts with degree P and Q, respectively, and they are defined by [7]

Φ(Bs) = [1− Φ̃1(Bs)1 − ...− Φ̃p(B
s)P ] and Θ(z) = [1− Θ̃1(Bs)1 − ...− Θ̃p(B

s)Q]. (4.13)
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Model Selection

Saturated Model.

Let M denote a set of models that are being analyzed in a time series model selection.
Determining which model in M is the most appropriate to model the dependency relation-
ships in a time series is a difficult task. There exists a hierarchy of models in M and the
saturated model is the ”largest model” because it can explain all other models in M . All
other models in M can be written in terms of the saturated model because they are reduced
versions of the saturated model. Before selecting a model, it is important to test all reduced
models in M against the saturated model in M .

Let M be the set of the time series models previously discussed

M = {AR(p), MA(q), ARMA(p, q), ARIMA(p, d, q)}, ARIMA(p, q, d)(P,D,Q)[s]}.

The saturated model in M is the seasonal ARIMA(p, q, d)(P,D,Q)[s] model because every
reduced model in M can be written in terms of the seasonal ARIMA model (Eq. 4.12). For
example, suppose Yt arises from the seasonal ARIMA process with P = Q = D = 0 and s =
1, ARIMA(p, q, d)(0, 0, 0)[1]. Yt is written as

Φ̃(B1)Φ(B)D0
1D

dYt = Θ̃(B1)Θ(B)εt

⇒ Φ̃(B1)Φ(B)(1−B1)0DdYt = Θ̃(B1)Θ(B)εt

⇒ Φ̃(B1)Φ(B)DdYt = Θ̃(B1)Θ(B)εt.

Since Φ̃ and Θ̃ are polynomials of order P = 0 and Q = 0, Φ̃(B1) = Θ̃(B1) = 1. Therefore,
Yt arises from

Φ(B)DdYt = Θ(B)εt. (4.14)

Since equation 4.14 is equivalent to equation 4.11, Yt arises from the non-seasonalARIMA(p, d, q)
process, implying that ARIMA(p, q, d)(0, 0, 0)[1] = ARIMA(p, q, d).
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In most cases, all reduced models in M can be written in terms of other reduced models.
For example, AR(p) can be written as ARMA(p, 0). Table 4.1 shows how the models in M
are related.

Table 4.1: Relationships between models in M

Reduced Models ARMA Non-Seasonal ARIMA Seasonal ARIMA

AR(p) = ARMA(p, 0) = ARIMA(p, 0, 0) = ARIMA(p, 0, 0)(0, 0, 0)[1]
MA(q) = ARMA(0, q) = ARIMA(0, q, 0) = ARIMA(0, q, 0)(0, 0, 0)[1]

ARMA(p, q) = ARIMA(p, q, 0) = ARIMA(p, q, 0)(0, 0, 0)[1]
ARIMA(p, q, d) = ARIMA(p, q, d)(0, 0, 0)[1]

Estimation and Forecasting of ARIMA Models

We have shown that every reduced model in M can be written in the terms of the
saturated model. Therefore, the seasonal ARIMA(p, q, d)(P,Q,D)[s] is the starting point
for selecting a model that is used to analyze the dependency relationships in a time series
and to forecast future values. In R, the function auto.arima() uses an algorithm devel-
oped by Hyndman and Khandakar (2008) in order to select the parameters and orders
of ARIMA(p, q, d)(P,Q,D)[s] [7]. A short explanation of this algorithm can be found in
Appendix A and a more in depth explanation of the algorithm can be found in Hyndman
and Khandakar (2008) [7]. For this analysis, the technique that is used to estimate the pa-
rameters is called Conditional Sums of Squares, a technique developed by Box and Jenkins
(1970). Again, the forecast() is used to forecast future values.
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Chapter 5

Implementation To Oracle eBusiness
Suite Application

Introduction

A transactional test is performed every five minutes on the Oracle eBusiness Suite appli-
cation in order to monitor the application’s transactional response time. These tests measure
the amount of time it takes the application to receive a request and return a result. These
measurements are stored in Nagios. Nagios is an open source network monitoring software
application. A script was created in order to extract the data for this analysis from Nagios.

The transactional response times that were recorded over a 386 day period are used for
this analysis. Each recording contains two elements; an unformatted time stamp (GMT time
zone) and its corresponding transactional response time (seconds). The recordings observed
from Day 1 to Day 365 make up Data Set 1 and are used to estimate the parameters of the
GEV distribution and ARIMA model. The recordings observed from Day 366 to Day 386
are used to test the accuracy of these estimations.

Daily Minimum Transactional Response Time

Checking for Stationarity

In order to determine whether a stationary GEV or a non-stationary GEV distribution
will be used to estimate the distribution of the minimum transactional response time for the
Oracle eBusiness Suite application, the assumption of stationary is investigated in Data Set
1.

Figure 5.1 contains the time series and ACF plots of the transactional response times
observed from Day 1 to Day 365 (Data Set 1). In Figure 5.1(a), the response times appear
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to increase from Month 10 - Month 12; this is evidence of a non-constant mean. In Fig-
ure 5.1(b), as lag increases, there continues to be ACF values that are greater than the level
of significance (blue lines). Both of the plots in Figure 5.1 suggest that the time series is
non-stationary. The results of the KPSS test return a p-value of .01. This indicates that
there is enough evidence to reject the null hypothesis of unit root and assume that the data
is non-stationary.
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Figure 5.1: Time series and ACF plots of every observed response times from Day 1 to Day
365 for the Oracle eBusiness suiteapplication (Data Set 1).

Block Minima Method

Data Set 1 is a time series of observations that are equally spaced by five minutes. The
first 288 observations in Data Set 1 are the response times recorded during Day 1, the second
288 observations represent the response times recorded during Day 2,..., and the last 288
observations are the response times recorded during Day 365. Since the goal of this analysis is
to estimate the distribution of the daily minimum response time, the Block Minima Method
will be implemented by partitioning Data Set 1 into 365 non-overlapping blocks, where each
blocks contains 288 observations.

The minimum values from each of the 365 blocks make up Data Set 2. The function in R
that is used to perform this Block Minima Method is ddply() [13]. Data Set 2 represents the
daily minimum transactional response times from Day 1 to Day 365 and is used to estimate
the time dependent parameters in the non-stationary GEV distribution.
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Selection of Time Dependent Parameters

Since there is evidence that Data Set 1 is non-stationary, the non-stationary GEV (µ(t, s),
σ(t, s), ξ(t, s)) distribution with non constant parameters will be used to estimate the dis-
tribution for the daily minimum transactional response time for the Oracle eBusiness Suite
application. The non-stationary GEV (µ(t, s), σ(t, s), ξ(t, s)) distribution and the selection
of its time-dependent parameters are explained in detail in Section 3 and all possible time
dependent parameters are listed in Table 3.1.

For this analysis, the selection of the parameter functions depends on the type of non-
stationarity that appears in the time series and ACF plots of Data Set 2. If the time series
plot reveals non-stationarity with trend, all of the parameters will be linear functions that
are dependent on time (t). If the plots reveals non-stationarity with seasonal pattern, all
of the parameters will be sinusoidal functions that are dependent on seasonal period (s).
If the time series plot reveals non-stationarity with trend and seasonal pattern, all of the
parameters will be a functions that are a sum of a linear and sinusoidal functions that are
dependent on t and s.
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Figure 5.2: Time series and ACF plots of the observed daily minimum response times from
Day 1 to Day 365 for the Oracle eBusiness suiteapplication (Data Set 2).

Figure 5.2 contains the time series and ACF plots of the time series from Data Set
2. The seasonal pattern in both Figure 5.2(a) and 5.2(b) suggest that there is a monthly
seasonal pattern in Data Set 2. Figure 5.2(a) also suggest that the daily minimum response
time decreases over time. Since these plots suggest that the time series in Data Set 2 is non-
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stationary with decreasing trend and monthly seasonal pattern, the non-constant parameters
in the non-stationary GEV (µ(t, s), σ(t, s), ξ(t, s)) distribution will be the following functions

µ(t, cs) = µo + µ1t+ µsinsin(ωcs) + µcoscos(ωcs) (5.1)

σ(t, cs) = σo + σ1t+ σsinsin(ωcs) + σcoscos(ωcs) (5.2)

ξ(t, cs) = ξo + ξ1t+ ξsinsin(ωcs) + ξcoscos(ωcs) (5.3)

where θµ = {µo, µ1, µsin, µcos}, θσ = {σo, σ1, σsin, σcos}, and θξ = {ξo, ξ1, ξsin, ξcos} are the
sets of intercepts and coefficients for the functions µ(t, cs), σ(t, cs), and ξ(t, cs), respectively
and ω = 2π

365.25
. The variable cs represents the monthly seasonal pattern in the time series

and denotes the center of the s-th period counted in days starting from the beginning of the
year. Since the plots in Figure 5.2 suggest that there is a monthly period, s =12. The center
day of month s is denoted by cs. For example, the center day of January is January 15th.
Since, January 15th is the 15th day of the year, c1 = 15. Table 5.1 defines all the center
days of the months.

Table 5.1: Description of the center days of the months.

cs Center Day of Month s Day of the Year

c1 January 15 15
c2 February 14 45
c3 March 15 74
c4 April 15 105
c5 May 15 135
c6 June 14 166
c7 July 15 196
c8 August 15 227
c9 September 15 258
c10 October 14 288
c11 November 15 319
c12 December 15 349

Estimating the non-stationary GEV Distribution

Equation 3.18 is the transformation that takes the normalized reciprocal of the block
minimum values. This transformation is applied to Data Set 2 and the data set is fitted to
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the non-stationary GEV distribution in R via the function gev.fit(). Appropriate residual
diagnostics were performed and the data appears to fit the distribution appropriately.

Table 5.2 contains the estimated intercepts and parameters coefficients. With these
estimated intercepts and coefficients, the estimated probability distribution for the daily
minimum transactional response time is constructed. The estimated expected daily minimum
response times from Day 1 to Day 365 (Eq. 3.19), the corresponding 95% lower confidence
limit (Eq. 3.20) and the median daily minimum response time (Eq. 3.21) are estimated from
the estimated parameters in Table 5.2.

Table 5.2: The estimated intercepts and parameter coefficients for the non-stationary GEV
distribution.

Parameter Set of Parameters Intercept Time Sin Cosine

Location: µ θ̂µ µ̂o = −0.3782 µ̂1 = 0.0685 µ̂sin = −0.0775 µ̂cos = −0.0004

Scale: σ θ̂σ σ̂o = 0.7987 σ̂1 = 0.0282 σ̂2 = 0.0847 σ̂3 = 0.0001

Shape: θ θ̂ξ ξ̂o = 0.0271 ξ̂1 = 0.0458 ξ̂2 = 0.1088 ξ̂3 = −0.0002

Figure 5.3 is a time series plot of Data Set 2 (black dots). The estimated expected values,
median and lower limit for the 95% confidence interval are represented by the red, blue and
green lines, respectively. Since the parameters are dependent on both t and s, the values for
these estimates are non constant. It appears that only a few of the observed daily minimum
response time from Data Set 2 fall below the lower 95% limit.
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Figure 5.3: Time series plot of the observed daily response times from Day 1 to Day 365 for
the Oracle eBusiness suiteapplication (Data Set 2). The time series plot contains the esti-
mated values for the daily minimum response times. These estimated values are calculated
from the estimated parameters in Table 5.2.
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Alert System

One of the goals of fitting Data Set 2 to a non-stationary GEV distribution is to estimate
future daily minimum response times and their corresponding statistics. These estimates can
then be used to create an alert system that notifies when an incomplete transaction occurs
in Oracle. Since Data Set 2 contains the daily minimum response times from Day 1 to Day
365, the daily minimum expected value, median and the lower 95% CI limit are estimated
for Day 366 to Day 386. These estimates are calculated from the estimated parameters in
Table 5.2. The observed response times from Day 366 to Day 386 are plotted against these
estimates in order to demonstrate how an alert system can be created to detect anomalies
that result in unsuccessful transactions.
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Figure 5.4: Time series plot of every observed response time from Day 366 to Day 386 for the
Oracle eBusiness suite application. The time series plot contains the estimated values for the
daily minimum response times. These estimated values are calculated from the estimated
parameters in Table 5.2.

Figure 5.4 contains the estimated expected values (red line), median (blue line) and lower
95% CI limit (green line) for the daily minimum response times from Day 366 to Day 386.
The lower 95% CI limit is interpreted as the shortest amount of time it would take for an
Oracle eBusiness Suite application to successfully complete a transaction. Any response time
that falls below this line suggest an unsuccessful transaction that occurred as a result of an
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anomaly. The black dots represent every observed response time from Day 366 to Day 386.
There are only three observed response times that fall below the lower limit. If this lower
limit served as the lower threshold for an alert system,an alert would have been sent out the
moment these response times occurred. This alert would have allowed for quicker anomaly
detection.

We have show the importance of being alerted when a response is shorter than usual as a
result of an incomplete transaction. It is also important to be alerted when response times
are longer than usual. Therefore, the daily average response time will be modeled in order
to estimate an upper threshold for Oracle transactional response times.
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Daily Average Response Time

Data Set 3 contains the daily average transactional response time from Day 1 to Day
365. It was created in R by applying the function ddply() to Data Set 1. Data Set 3 is
used to estimate and forecast the daily average response time for Oracle. The assumption
of stationarity is investigated in order to determine the most appropriate time series model
for Data Set 3.

Checking for Stationarity

Figure 5.5 contains the time series and ACF plots of the daily average transactional
response time for the Oracle eBusiness Suite application from Day 1 to Day 365 (Data Set
3). There appears to be a sinusoidal patter in Figure 5.5(a) and 5.5(b). This suggest that
the time series is non-stationary with seasonal pattern. It also appears that the response
times from Month 10 - Month 12 in Figure 5.5(a) have an increasing trend. The KPSS test
for unit root was performed to algebraically check the stationary assumption. The results of
the KPSS test return a p-value of .01. This indicates that there is enough evidence to reject
the null hypothesis of unit root and assume that the data is non-stationary.
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Figure 5.5: Time series and ACF plots of the observed daily average response times from
Day 1 to Day 365 for the Oracle eBusiness Suite application (Data Set 3)
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Model Selection

Figure 5.5 and the results of the KPSS test indicate that the data is non-stationary with
both increasing trend and seasonal pattern. Therefore, we will begin our model selection with
the seasonal ARIMA(p, q, d)[P,Q,D][s]. Since our data is collected daily, we can investigate
a yearly period (s = 365), a monthly period, (s = 30) and a weekly period (s = 7). However,
since the data set contains exactly 365 observations, a model with s = 365 will return the
same results as a model with s = 1 because there is only one observation per day of the
year. Therefore, we will begin our model selection by comparing ARIMA(p, q, d)[P,Q,D][s]
models with s = 30 and s = 7.

The auto.arima() function in R is used to select the most appropriate time series
model to describe the dependency relationship in the daily average transactional response
times for the Oracle eBusiness Suite application. The results suggest that the model with
the smallest AIC value is the seasonal autoregressive integrated moving average model
ARIMA(2, 2, 1)[2, 1, 0]7. This implies that the time series analyses arises from a seasonal
ARIMA process where Yt arises from equation 5.4. With some algebra, equation 5.5 can be
reduced to equation 5.5.

Φ̃(B7)Φ(B)D0
7D

1Yt = Θ̃(B7)Θ(B)εt (5.4)

⇒ (1−φ̃1B
7−φ̃2B

14)(1−φ1B−φ2B
2)DYt = (1−θ̃1B

7)(1−θ1B−θ2B
2)εt

⇒ (1−φ1B−φ2B
2− φ̃1B

7 +φ1φ̃1B
8 +φ2φ̃1B

9− φ̃2B
14 +φ1φ̃2B

15 +φ2φ̃2B
16)(Yt−Yt−1) =

(1− θ1B − θ2B
2 − θ̃1B

7 + θ̃1θ1B
8 + θ̃1θ2B

9)εt

⇒ Yt = (1+φ1)Yt−1 + (φ2−φ1)Yt−2 − φ2Yt−3 + φ̃1Yt−7 − φ̃1(1+φ1)Yt−8 + (5.5)

φ̃1(−φ2 + φ1)Yt−9 + φ2φ̃1Yt−10 − φ̃2Yt−14 − φ̃2(1 + φ1)Yt−15 + φ̃2(φ1 − φ2)Yt−16 +

φ2φ̃2Yt−17 + εt − θ1εt−1 − θ2εt−2 − θ̃1εt−7 + θ̃1θ1εt−8 + θ̃1θ2εt−9
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Dependency Relationships.

The selected orders for this model indicates that the random variable Yt has a significant
covariance with

{Yt−1,Yt−2,Yt−3,Yt−7,Yt−8,Yt−9,Yt−10,Yt−14,Yt−15,Yt−16,Yt−17} and {εt−1, εt−2, εt−7, εt−8, εt−9}.

These significant covariance can be interpreted as follows. The selection of p = 2 implies
that Yt has a significant covariance with the 2 previous day’s average response time (Yt−1

and Yt−1). The selection of q = 2 implies that Yt has a significant covariance with the
random errors from the two previous days (εt−1 and εt−2). The seasonal order selection of
s = 7 implies that Yt has a significant covariances with random variables and random errors
from previous weeks. For example, the selection of P = 2 implies that Yt has a significant
correlation with daily response times from the previous two weeks (Yt−7 and Yt−14). Since
p = 2, Yt also has a significant correlation with Yt−8, Yt−9, Yt−15 and Yt−16. Since Q = 1,
Yt has a significant correlation with the random error from the previous week (εt−7). Since
q = 2, Yt also has a significant correlation with εt−8 and εt−9. Lastly, in order to remove the
stationarity from the time series, an non-differencing operator with order d = 1 is applied
to each of the random variables in the model. This adds the random variables Yt−10 and
Yt−17 to the model.

Fitted Values

The estimated model parameters that are returned from fitting Data Set 3 to the seasonal
ARIMA(2, 2, 1)[2, 1, 0]7 model from equation 5.5 are in Table 5.3. Equation 5.6 represents
the the fitted seasonal ARIMA(2, 2, 1)[2, 1, 0]7 model.

Estimated Parameter Value

φ̂1 0.7417

φ̂2 0.1986
ˆ̃
φ1 0.9551
ˆ̃
φ2 0.0359

θ̂1 0.1063

θ̂1 -0.7900
ˆ̃
θ1 -0.8669

Table 5.3: The estimated model parameter coefficients for the seasonal
ARIMA(2, 2, 1)[2, 1, 0]7 model.
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⇒ ŷt = (1 + φ̂1)ŷt−1 + (φ̂2 − φ̂1ŷt−2 − φ̂2ŷt−3 +
ˆ̃
φ1ŷt−7 −

ˆ̃
φ1(1 + φ̂1ŷt−8 + (5.6)

ˆ̃
φ1(−φ̂2 + φ̂1)ŷt−9 + φ̂2

ˆ̃
φ1ŷt−10 −

ˆ̃
φ2ŷt−14 −

ˆ̃
φ2(1 + φ̂1)ŷt−15 +

ˆ̃
φ2(φ̂1 − φ̂2)ŷt−16 +

φ̂2
ˆ̃
φ2ŷt−17 + ε̂t − θ̂1ε̂t−1 − θ̂2ε̂t−2 −

ˆ̃
θ1ε̂t−7 +

ˆ̃
θ1θ̂1ε̂t−8 +

ˆ̃
θ1θ̂2ε̂t−9

Once the estimated values from Table 5.3 are plugged into equation 5.6, the set of fitted
value, denoted by ŷ1:365, are calculated directly from equation 5.6. The set ŷ1:365 represent
the estimated daily average transactional response times from Day 1 to Day 365. Figure 5.6
is Data Set 3 (black dotted line) plotted against ŷ1:365 (red line). The fitted values appear
to model the data appropriately and residual diagnostics were analyzed and confirm an
appropriate fit.
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Figure 5.6: A time series plot of the observed daily average response times from Day 1 to Day
365 for the Oracle eBusiness Suite application (Data Set 3). The time series plot contains
the estimated daily average values. These values are calculated from the fitted seasonal
ARIMA(2, 2, 1)[2, 1, 0]7 model (eqn. 5.6).
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Alert System

Once the models parameters for the seasonal ARIMA(1, 2, 1)[2, 1, 0][7] are estimated, the
forecast() function in R is used to forecast the daily average response times for Day 366
to Day 386 and their corresponding upper 95% confidence limits. The 95% confidence limit
will be used as the upper threshold for an alert system that will be used to detect longer
than usual response times.

Figure 5.7 contains estimated daily average response times for Day 366 to Day 386 (red
line) and the corresponding upper 95% confidence limit (green line). The black dots represent
the observed daily average response times from Day 366 to Day 386. Two of the observed
daily average response times lie above the 95% upper confidence limit. If we let the 95%
upper confidence limit be the upper threshold for an end of day alert system, then an alert
would have been sent out notifying that there was a performance issue throughout these two
days.
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Figure 5.7: A time series plot of the observed daily average response times from Day 366
to Day 386 for the Oracle eBusiness Suite application. The time series plot contains the
estimated daily average values. These values are calculated from the forecast function and
the estimated model parameters from Table 5.3.
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Using the upper 95% confidence limit as the upper threshold for an end of the day alert
system is beneficial for solving performance issues. However, it is important to send out an
alert the moment a pattern of long response times that are a result of a performance issue
starts to occur. Therefore, the estimated hourly average response time will be estimated in
order to have an hourly alert system.

Hourly Average Response Time

The methodology used to estimate the hourly average response time is identically to
the methodology used to model the daily average response time. The data set that is used
to estimate and forecast the daily average response time for the Oracle eBusiness Suite
application is created in R by applying the function ddply() to Data Set 1. This returns a
data set that contains the hourly average transactional response time from Day 1 to Day
365 (Data Set 4).

Checking for Stationarity

Figure 5.8 contains the time series and ACF plots of the hourly average transactional
response time for the Oracle eBusiness Suite application from Day 1 to Day 365 (Data Set
4). Both Figures 5.8(a) and 5.8(b) appear to have a slight seasonal trend. The results of the
KPSS test return a p-value of 0.01. This indicates that there is there is enough evidence to
reject the null hypothesis of unit root and we may assume that the data is non-stationary.
Since both the diagnostic plots and KPSS test suggest non-stationarity, we will begin our
model selection with the ARIMA(p, q, d)[P,Q,D][s] model.

Model Selection

The results of applying the auto.arima() function to Data Set 4 selects an ARIMA(1, 2, 1)
(0, 1, 0)[24] as the most appropriate time series model to describe the dependency relationship
in the hourly average transactional response times for the Oracle eBusiness Suite application.
This implies that Yt arises from the autoregressive model

[1− φ1B]D1Yt = [1− θ̃1B
24][1− θ1B − θ2B

2]εt. (5.7)

The selected model parameters imply that the differenced hourly average response time for
the Oracle eBusiness Suite application depends only on the previous hour’s average response
time. Whereas, an hour’s random error depends on the 2 previous hours’ random errors and
the random error from 24 hours prior.
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Figure 5.8: Time series and ACF plot of the observed hourly average response times from
Day 1 to Day 365 for the Oracle eBusiness Suite application (Data Set 4).

Fitted Values

The fitted ARIMA(1, 2, 1)(0, 1, 0)[24] model that is used to calculate the estimated hourly
average response times is

[1− φ̂1B]D1ŷt = [1− ˆ̃
θ1B

24][1− θ̂1B − θ̂2B
2]ε̂t, (5.8)

where φ̂1 = 0.362, θ̂1 = −1.1745, θ̂2 = 0.1756 and
ˆ̃
θ1 = 0.0119 are the values of the estimated

parameters. The value ŷt represents the estimated average response time for hour t and ε̂t
represents the difference between the observed and estimated average response for hour t,
where ε̂t = yt − ŷt.

Figure 5.9 contains a plot of the estimated hourly average response times calculated from
the fitted model (red line) against the observed hourly average response times (black dotted
line) for the Oracle eBusiness Suite application from Day 1 to Day 365. The fitted values
appear to fit the observed data well and appropriate residual diagnostics were performed
and confirm an appropriate fit.
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Figure 5.9: A time series plot of the observed hourly average response times from Day 1
to Day 365 for the Oracle eBusiness Suite application (Data Set 4). The time series plot
contains the estimated hourly average values. These values are calculated from the fitted
ARIMA(1, 2, 1)(0, 1, 0)[24] model (eqn. 5.8).

Alert System

Figure 5.10 contains a plot of the estimated hourly response times (red line) for Day 366
to Day 386 and the corresponding 95% upper limit (green line). The black dots represent
the observed hourly average response times from Day 366 to Day 386. There appears to be
a few hourly average response times that are greater than the 95% upper limit.

Most of the long hourly average response times were observed occurred between Days
378 and 379. The Oracle eBusiness Suite application was investigated after this analysis was
performed and it was discovered that on Day 377, the application had a power outage that
resulted in unrecorded response times and large response times from Days 378 and 379. If
this alert system was implemented at the time of this power outage and the upper limit was
used as the upper threshold from an alert system, an alarm would have been sent out the
moment the first unusually long hourly average response time occurred.
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Figure 5.10: A time series plot of the observed hourly average response times from Day 366
to Day 386 for the Oracle eBusiness Suite application. The time series plot contains the
estimated hourly average values. These values are calculated from the forecast function and
the estimated model parameter from the fitted ARIMA(1, 2, 1)(0, 1, 0)[24] model (eqn. 5.8).
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Chapter 6

Implementation to Weblogic c12
Server Application

Introduction

The data used to analyze Weblogic c12 Server application’s transactional response time
are from the transactional tests that are performed every five minutes on the Weblogic c12
Server application. Like the Oracle eBusiness suite application, the data is stored in Nagios.
Data Set 5 contains the recorded transactional response times from the tests that were
performed from Day 1 to Day 365. Each recording from this data set contains two elements,
an unformatted time stamp (GMT time zone) and its corresponding transactional response
time (seconds). The recorded data from Day 366 to 386 is used to test the accuracy of the
estimations calculated from Data Set 5. Since the methodology used to perform this analysis
is identical to the methodology described in Chapter 5, we will start by discussing the results
of estimating the non-staionary GEV Distribution for the daily minimum response times.

Daily Minimum Response Time

Results

Figure 6.1 is a time series plot of the daily minimum response times from Day 1 to Day
365 for the Weblogic c12 Server application (black dotted line). It contains the estimated
Weblogic c12 server application’s expected daily minimum response times (red line), the
corresponding 95% lower confidence limit (green line)and the estimated median (blue line).
Appropriate residual diagnostics were performed and suggest that there is an appropriate
fit. Figure 6.2 contains every observed response time from Day 366 to Day 386 and the
forecasted daily minimum response time for the Weblogic c12 Server application. On Day
368, there appears to be six observed response times that fell below the lower limit. If the
lower limit was used as the lower threshold for an alert system, an alarm would have been
sent out the moment the first unusually short response time fell below the threshold. This
would have allowed for a quicker and more accurate anomaly detection.
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Figure 6.1: A time series plot of the observed daily minimum response times from Day 1 to
Day 365 for the Weblogic c12 Server application. The time series plot contains the estimated
daily minimum response times. These estimated values are calculated from the estimated
parameters from the fitted non-stationary GEV distribution.
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Figure 6.2: A time series plot of every observed response times from Day 366 to Day 386 for
the Weblogic c12 Server application. The time series plot contains the estimated daily min-
imum response times. These estimated values are calculated from the estimated parameters
from the fitted non-stationary GEV distribution.
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Hourly Average Response Time

Results

Since having a continuous alert system is more beneficial than having an end of day
alert system, we will only discuss the results of modeling Weblogic c12 server application’s
hourly average response time. The model that is selected as the most appropriate model
to estimate the hourly average response times and forecast future response times is a non-
seasonal ARIMA(2, 2, 0) model.

Figure 6.3 is a time series plot of Weblogic c12 server application’s observed hourly
average response times for Day 1 to Day 365 (block dotted line). The red line represents the
estimated expected values for the hourly average response times that were calculated from
the fitted non-seasonal ARIMA(2, 2, 0) model.

Figure 6.4 contains the foretasted hourly average response times for Day 366 to Day 386
and the corresponding 95% upper confidence limit. The black dots represent the observed
hourly average response times from Day 366 to Day 386. There appears to be some hourly
average response times that are greater than the upper limit; especially between Days 378
and 379. Days 378 and 379 are the dates that the power outage on Day 377 affected the
Oracle eBussiness suite application’s response times. Further investigation was done on
the Weblogic c12 server application, and it was found that the power outage affected this
application as well. If the upper limit served as the upper threshold for an alert system, a
notification of these long response times would have been sent the moment they had started
to occur; this would have allowed for quicker anomaly detection.
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Figure 6.3: A time series plot of the observed hourly average response times from Day
1 to Day 365 for the Weblogic c12 Server application. The time series plot contains the
estimated hourly average response times. These estimated values are calculated from the
fitted non-seasonal ARIMA(2, 2, 0) model.
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Figure 6.4: A time series plot the observed hourly average response times from Day 366 to
Day 386 for the Weblogic c12 Server application. The time series plot contains the estimated
hourly average response times. These estimated values are calculated from the forecast func-
tion the estimated model parameters from the fitted non-seasonal ARIMA(2, 2, 0) model.
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Chapter 7

Conclusion

The theoretical minimum response time of an application serves as a basis for the ap-
plication’s expected response time. We have shown through the Oracle eBusiness Suite and
Weblogic c12 Server applications that estimating the daily minimum response time results
in an estimated lower limit. This estimated lower limit represents the minimum amount of
time that the application should take to complete any transaction on that day. When an
application’s response time is greater than a certain threshold, there is likely an anomaly
in the application that is causing unusual performance issues. We have also shown that
estimating the distribution of the theoretical average response time can be used to calculate
the value of this threshold.

Since Sandia National Laboratory’s Application Services and Analytics departments mid-
dleware services provide support to the entire laboratory, it is important that we research
and implement analytic capabilities that can improve our understanding of an applications
transactional response time. Therefore, it is beneficial to implement the findings of this
research to all types of transactional applications that are being used by the Application
Services and Analytics departments. Implementing these methods will result in quicker and
more accurate anomaly detection that will lead to better problem management.
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Appendix A

Hyndman and Khanadakar ARIMA
Model Selection Algorithm

The following is a summary of the Hyndman and Khanadakar ARIMA model selection
algorithm that can be found in the Statistical Journal, ”Automatic time series forecasting:
The forecast package for R”. The algorithm is used in the auto.arima() function in R [7].

A.0.1 Non-Seasonal: s = 1

Saturated Model: ARIMA(p, q, d)

Step 1:

Select d using the KPSS unit-root test explained in section 2.2.1. This involves in-
creasing the value of d until the KPSS unit-root test returns an insignificant result. The first
value of d that returns an insignificant result will be selected for the model.

Step 2:

Fit the following four models using the function arima() in R programming:

1. ARIMA(2, d, 2)

2. ARIMA(0, d, 0)

3. ARIMA(1, d, 0)

4. ARIMA(0, d, 1)

If d ≤ 1 then these models are fit with c 6= 0. Select the model that has the smallest AIC
value, where AIC = 2(p+ q +K)− 2ln(L),
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and where k = 1 if c 6= 0 and L is the maximized likelihood of the model fitted to the
non-seasonal differenced data Ddyt. The selected model will be called the “current” model.

Step 4:

Fit the following variations of the “current” model from Step 3 where:

1. One of the model orders p and q varies by ±1 from the current model.

2. Both model order p and q vary by ±1 from the current model.

3. Either include or exclude the parameter c, depending on if it’s included in the “current”
model.

If the AIC value one of the variations of the “current” model has a lower AIC value then the
“current” model, then it becomes the new ”current model”. After all variations have been
fitted, the “current” model is selected as the most appropriate model.

In order to avoid problems with convergence or near unit roots, Hyndman andKhandakar
give a list of constraints that can be found in their Journal of Statistical software [7].

A.0.2 Seasonal: s 6= 1

Saturated Model: ARIMA(p, q, d)(P,DQ,D)[s]

Step 1:

Select D, where D = 0 or 1, using the Canova-Hansen Test. The Canova-Hansen Test
checks whether the change seasonal pattern of a realization changes sufficiently over time
leads to a unit root. Further discussion of this test can be found in Canoca and Hansen 1995
[1].

Step 2:

Select d by applying the KPSS unit-root test, section 2.2.1, to the seasonal differenced
data DD

s yt. This involves increasing the value of d until the KPSS unit-root test returns an
insignificant result. The first value of d that returns an insignificant result will be selected
for the model.
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Step 3:

Fit the following four models using the function arima() in R programming:

1. ARIMA(2, d, 2)(1, D, 1)[s]

2. ARIMA(0, d, 0)(0, D, 0)[s]

3. ARIMA(1, d, 0)(1, D, 0)[s]

4. ARIMA(0, d, 1)(0, D, 1)[s]

If D + d ≤ 1, then these models are fit with c 6= 0. Select the model that have the smallest
AIC value, where AIC = 2(p+ q + P +Q+ k)− 2ln(L), and where k = 1 if c 6= 0 and L is
the maximized likelihood of the model fitted to the differenced data, Dd

sD
dyt. The selected

model will be called the “current” model.

Step 4:

Fit the following variations of the “current” model from Step 3 where:

1. One of the model orders p, q, P and Q varies by ±1 from the current model.

2. Both model order p and q vary by ±1 from the current model.

3. Both model order P and Q vary by ±1 from the current model.

4. Either include or exclude the parameter c, depending on if it’s included in the “current”
model.

If the AIC value one of the variations of the “current” model has a lower AIC value then the
“current” model, then it becomes the new ”current model”. After all variations have been
fitted, the “current” model is selected as the most appropriate model.

In order to avoid problems with convergence or near unit roots, Hyndman andKhandakar
give a list of constraints that can be found in their Statistical Journal, ”Automatic time series
forecasting: The forecast package for R” [7].
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